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Abstract 
  
 Histone Deacetylase (HDAC) plays a vital role in cellular processes, for example 

gene expression, cell growth, and apoptosis. Finding drug candidates to inhibit the over 

activity of HDACs in cancer is a growing area of interest. Inhibitors, thus far, have three 

important motifs to be studied: the zinc binding group, a hydrophobic linker, and a cap 

group. By altering these groups on the inhibitor, not only can activity be increased but 

also selectivity within the classes of HDACs. We present the design of two novel sets of 

molecules that contain either a 1,2,3-triazole or 1,2,4-triazole. The 1,2,3-triazoles were 

synthesized using “click chemistry” with a novel pyridyl triazine catalyst. The 1,2,4-

triazoles were synthesized utilizing substitution chemistry. This set of molecules was 

designed after suberoylanilide hydroxamic acid (SAHA) but replaced the hydroxamate 

with the triazole as the zinc binding group. The activity of these inhibitors against HDAC 

1, HDAC 6, and SIRT 1 were tested using the Biomol Fluor de Lys in vitro kits. Though 

none of the synthesized compounds were strong activators or inhibitors of any of the 

classes of HDACs, trends were observed that could lead to the design of more potent 

inhibitors.  

 
 
 
 
 
 
 
 
 
 

vi

 



www.manaraa.com

Table of Contents 
 
Dedication_________________________________________________________________ iii 
Acknowledgements _________________________________________________________ iv 
Abstract __________________________________________________________________ vi 
Table of Contents___________________________________________________________vii 
List of Figures _____________________________________________________________ ix 
List of Tables _______________________________________________________________x 
Introduction _______________________________________________________________11 

Background and Mode of Action of HDACs ___________________________________11 
Classes and Functions of HDACs ___________________________________________14 
Types of HDAC Inhibitors __________________________________________________15 
HDAC Typical Design Features _____________________________________________18 
SAHA Based Inhibitor Design_______________________________________________20 
Designing Class Selective Inhibitors _________________________________________21 
Fluor de Lys Assay Background ____________________________________________23 

Design and Synthesis of 1,2,3- and 1,2,4-Triazoles as Zinc Binding Groups __________24 
Design and Synthesis of 1,2,3-triazoles: ______________________________________24 
Design and Synthesis of 1,2,4-triazoles: ______________________________________25 

Results and Discussion _____________________________________________________26 
Enyzme Inhibition ________________________________________________________26 

HDAC1________________________________________________________________27 
SIRT1_________________________________________________________________28 
HDAC6________________________________________________________________29 

Selectivity _______________________________________________________________30 
Conclusion ______________________________________________________________33 
Future Work _____________________________________________________________34 

Experimental ______________________________________________________________35 
Materials: _______________________________________________________________35 
WARNING _______________________________________________________________35 
1a: 1,4-Diazidobutane:_____________________________________________________35 
1b: 1,5-Diazidopentane:____________________________________________________36 
1c: 1,6-Diazidohexane: ____________________________________________________36 

vii

 



www.manaraa.com

2a: 1-(4-azidobuty)-4-phenyl-1H-1,2,3-triazole: _________________________________36 
2b: 1,5-(5-azidopentyl)-4-phenyl-1H-1,2,3-triazole: ______________________________37 
2c: 1,6-(6-azidohexyl)-4-phenyl-1H-1,2,3-triazole:_______________________________37 
3a: (1-(4-(4-phenyl-1H-1,2,3-triazole-1-yl)butyl)-1H-1,2,3-triazol-4-yl)methanol _______37 
3b:  (1-(5-(4-phenyl-1H-1,2,3-triazole-1-yl)pentyl)-1H-1,2,3-triazol-4-yl)methanol _____38 
5b: 6-bromo-N-phenylhexanamide: __________________________________________41 
6a: N-phenyl-5-(1H-1,2,4-triazol-1-yl)pentanamide: _____________________________42 
6b: N-phenyl-6-(1H-1,2,4-triazol-1-yl)hexanamide: ______________________________42 
7a: 5,6-diphenyl-3-(pyridin-2-yl)-1,2,4-triazine. _________________________________43 
Fluorimetric HDAC Assay: _________________________________________________44 

References ________________________________________________________________46 
Vita ______________________________________________________________________50 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

viii

 



www.manaraa.com

List of Figures 
 
Figure 1:Histone Acetylation and Deacetylation with HAT and HDAC ________________12 
Figure 2: “Closed” vs “Open” chromatin during chromatin remodeling using HAT and 
HDAC_____________________________________________________________________13 
Figure 3: Commonly known HDAC inhibitors ____________________________________17 
Figure 4: HDAC binding site __________________________________________________19 
Figure 5: SAHA as an Inhibitor Model __________________________________________21 
Figure 6: Known HDAC1 Inhibitors: from Chen et al ______________________________24 
Figure 7: 1, 2, 3, - Triazole for Zinc Binding Group Synthesis_______________________27 
Figure 8: 1, 2, 4 - Triazole for Zinc Binding Group Synthesis _______________________28 
Figure 9: HDAC1, HDAC6, and SIRT1 Assay Results______________________________31 
Figure 10: HDAC1, HDAC6, and SIRT1 Assay Results_____________________________31 
Figure 11: HDAC1 Inhibition Graph with Various Compounds at 25 uM ______________32 
Figure 12: HDAC6 Inhibition Graph with Various Compounds at 25 uM ______________32 
Figure 13: SIRT1 Inhibition Graph with Various Compounds at 25 uM _______________33 
Figure 14: Future Compounds ________________________________________________34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ix

 



www.manaraa.com

List of Tables 
 
Table 1: HDACs expression sites and functions in cancer __________________15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x

 



www.manaraa.com

Introduction 
 

Background and Mode of Action of HDACs 
 

The aberrant expression of various genes is crucial to the onset and progression 

of cancer. There is evidence that, not only can altering the Deoxyribonucleic acid (DNA) 

sequence directly cause the onset of cancer but also epigenetic changes can affect the 

cancer genome.1 These epigenetic changes can be observed by controlling the ‘open’ 

and ‘closed’ states of chromatin, i.e.-chromatin remodeling. Chromatin is a regular array 

of nucleosomes and DNA linkers.2-4 Nucleosomes are comprised of a histone octamer 

with double stranded DNA wrapping around the histones.5 The histones serve as 

spindles for the DNA to be ordered and packaged around. They are paired with non-

histone proteins and DNA linkers to string the nucleosomes together forming 

chromatin.6 The ‘open’ and ‘closed’ states of chromatin refer to reversible modification 

of acetyl groups on the core histones. When the chromatin is ‘open’, transcription 

machinery will have access to the DNA, thus enabling  the DNA to be read and gene 

expression to occur.2,3 In the ‘closed’ form DNA is no longer accessible, and thus the 

gene expression is silenced.3,4,6  

In Eukaryotic cells, these ‘open’ and ‘closed’ states are controlled by Histone 

acetylation or deactylation. Histone acetylation is maintained by histone deacetylases 

(HDACs) and histone acetyltransferases (HATs).5 HATs transfer the acetyl group from 

acetyl-coenzyme A to the ε-amino groups of lysine residues at the N-terminal on core 

histones.5,7 HDACs have an opposing role to remove the acetyl groups by hydrolysis  

 11
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(Figure 1). This equilibrium process accounts for the above discussed gene expression, 

specifically chromatin remodeling. When HDACs are active this leads to hypoacetylated 

region of the chromatin, the amino groups are protonated and positively charged lysine 

can interact electrostatically with the phosphate groups of the DNA.1,8 This causes the 

DNA to be bound more tightly to the chromatin and gene silencing will occur. The 

chromatin is unfolded when the HATs begin to reacetylate the lysine to removing the 

electrostatic interactions between the amine functionality and the DNA (Figure 2).6,9 

Post-translational control of chromatin is an emerging area of anti-cancer drug 

design, focusing on HDAC regulation as a viable form of epigenetic and non-epigenetic 

control.6 HDAC inhibition is the central focus over HATs due to the fact that HDACS are 

more structurally diverse. This leads to a diversity of function and a wider array of 

promising targets for drug discovery.  Current research has shown that HDACs can also 

form various complexes with additional proteins, allowing for non-epigenetic 

modifications.  

 

Figure 1:Histone Acetylation and Deacetylation with HAT and HDAC 8 
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Figure 2: “Closed” vs “Open” chromatin during chromatin remodeling using HAT 
and HDAC 9,10 
 

  HDAC can modify gene expression not only by altering chromatin but by forming 

complexes with other proteins and by recruiting other transcription factors. A few 

examples of HDAC complexes that still involve histone methylation or acetylation are 

the Sin3 and NuRD (nucleosome remodeling and deacetylating) complexs.6 Sin3 

contains RpAp46/48 with HDAC 1 and 2. The HDACs are recruited to the DNA which 

leads to gene silencing by altering the DNA methylation/acetylation. A similar complex is 

formed with NuRD with HDAC1 and HDAC2 and again mediates DNA methylation by 

recruiting DNA methyltransferase1 (DNMT).6,11 Examples of non-histone modification 

include direct complexation with transcription factors such as STAT3, tumor suppressor 

genes such as p53, and cell cycle regulators such as RB (retinoblastoma protein).12  

STAT3 can be directly acetylated and inactivated by HDAC1. Other coenzymes needed 

for STAT3 transcription function can also be acetylated by HDAC1 or HDAC3 and 

cause inactivation.6,12 Tumor suppressor gene p53 is also deacetylated by HDAC1, 

HADC2 and/or HDAC3. P53 plays an important role in cell proliferation and gene 

transcription by relying on its ability to bind DNA with a sequence specificity to activate 

transcription. The down-regulation of the p53 activity is very dependent on which region 

 13
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of p53 is acetylated and is HDAC dose dependent.13 RB also interacts with HADC 

similarly to p53, by interacting with RB and other proteins that complex with RB that can 

directly affect chromatin remodeling.6,14 There are several ways, epigenetic and non-

epigenetic, HDACs can alter gene transcription leading to cancer regulation. But the 

primary challenge in targeting HDACs is finding inhibitors that can have HDAC 

specificity amongst the various classes. 

Classes and Functions of HDACs 
 

There are four major classes of HDACs, class I, IIa and IIb, III, and IV. Within the 

four classes are 18 isozymes.3,14 Class I HDACs include HDAC1, HDAC2, HDAC3, 

HDAC8. Class I HDACs are generally localized in the nucleus and are related to the 

Rpd3 gene product.10 Class II HDACs can be split into two sub-classes: IIa which 

includes HDAC4, HDAC5, HDAC7 and HDAC9 and sub-class IIb which includes 

HDAC6 and HDAC10. Class IIa has a conserved C-terminal catalytic domain similar to 

the HDAC1 yeast protein but the N-terminal domain has no similarity to HDACs in other 

classes. Class IIb has an extra acetylase domain when compared to the HDAC1 yeast 

protein. Class II HDACs primarily localize in the cytoplasm but can migrate from the 

nucleus to the cytoplasm.6,14 Class III HDACs are the sirtuin family, these include SIRT1 

through SIRT7. Class IV HDACs include HDAC 11 and are located in the cytoplasm and 

nucleus but not known to shuttle between the two like class II HDACs.14 HDAC class IV 

is the newest class of HDACs and has features of both class I and II HDACs.2 The 

various HDAC classes also exhibit different functions as well as different localities within 

the cell. (Table 1). 8,10,14 

14 
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Table 1: HDACs expression sites and functions in cancer  2,9,15,16 
 

 
 

HDAC class III isoforms are not related to class I and II in structure or function. 

HDAC class I and II both contain zinc containing amide hydrolases and are zinc 

dependent in their function. HDAC class III relies on NAD+ dependent amide hydrolases 

and are zinc independent. Of the four HDAC classes, class I is the primary anti-cancer 

drug target because it not only has epigenetic features but important non-epigenetic 

control abilities as well. Examples include degrading the tumor suppressor gene p53, 

which is active in apoptosis, DNA repair and overall cell cycle control.2,14  

Types of HDAC Inhibitors 
 

HDAC inhibitors have various anti-cancer functions and work on several different  

forms of cancer. Because of their broad spectrum of function, HDAC class I and II  

15
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inhibitors have been subdivided into four different classes: hydroxamates, aliphatic 

acids, benzamides and cyclic peptides.17 There are a few molecules in particular that 

have been highly studied in each class of inhibitors (Figure 2).  Trichostatin A (TSA) and 

Suberoyl anilide hydroxamic acid (SAHA, also known as vorinostat) are known HDAC 

inhibitors in the hydroxamate family.3 SAHA is the first HDAC inhibitor to be approved 

for clinical treatment.15 TSA shows reduction in tumor weight but it is not selective 

enough to be approved by the FDA for clinical trials. SAHA on the other hand showed a 

reduction in tumor weight, had a low abnormality in biochemical function rate, has 

cancer selectivity (for T cell lymphoma), and when used in combination with other drugs 

could enhance other forms of cancer therapy such as tumor radiation therapy.3,6 

Valproic acid (VPA) is an example of the aliphatic acid inhibitors, MGCD0103 is an 

example of the benzamide inhibitors and lastly FK-228 is a cyclic peptide inhibitor.2,15 

The aliphatic acid inhibitors, benzamide inhibitors and the cyclic peptides have not 

shown cancer selectivity in trials yet but are being tested in clinical trials for various 

types of cancers.3 All of these inhibitors have shown therapeutic potential as 

monotherapy or in combination with other anti-tumor drugs and are only active on 

HDAC class I and II inhibition. HDAC class III (sirtuin inhibition) is dependent on NAD+.7 

A common Class III inhibitor is nicotinamide but this has issues similar to TSA, it is not 

very selective against cancer types, treatments, or sirtuin isoforms. 

16
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Figure 3: Commonly known HDAC inhibitors 2,6,18 
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HDAC Typical Design Features 
 

There are three typical requirements that need to be considered when designing 

an HDAC inhibitor for class I or II: 1-) a zinc-binding group, capable of fitting into the 

catalytic site and bind zinc(II), 2-) a linker group able to occupy the hydrophobic channel, 

and 3-) a cap group to interact with sites on the surface of the HDAC (Figure 3).19 One 

or more of these features can be changed to try to maximize isozyme selectivity and 

overall HDAC inhibition. Common changes to the known inhibitors TSA or SAHA used 

to make them more selective include: making the cap group more bulky by adding more 

ring groups or a cyclic peptide at the end of the linker, adding substituents within or on 

the linker region, and using heteroaromatic substituents as the zinc binding group.20 

Some of these modified compounds did show more selectivity such as depsipeptide 

(FK-228) and tubacin. Depsipeptide is a cyclic peptide and is selective towards HDAC1 

and 2.3,6 Tubacin is very similar to SAHA but has a much bulkier cap group and is 

selective towards HDAC6. By adding more cyclic groups, there is an increase of π-π 

stacking allowing for a stronger interaction with phenylalanine and tyrosine residues that 

are present in the linker and cap region of the HDAC binding site.20  

The major HDAC inhibitors SAHA and TSA have the hydroxamate moiety as the 

zinc binding group. The reason that hydroxamates can inhibit HDACs is a salt-bridge 

can be formed from the hydroxamate to the positively charged zinc.6 Also, there are two 

histidines, two tyrosines and an aspartic acid, that within the pocket interacts with the 

hydroxamate.21,22 

18
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Figure 4: HDAC binding site:  A: Drawing representing the HDAC binding sites 
with SAHA. B: Crystal structure of HDAC8 bound to SAHA  
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The histidine to aspartic acid interaction is a charge-relay system that is common 

in active sites. These charge relays bind to the water adjacent to the zinc molecule. The 

tyrosine is located directly next to the zinc atom and may also contribute to hydrogen 

bonding. The hydroxamate can also hydrogen bond with the charge relay system and 

the tyrosine hydroxyl group. The hydroxamate also replaces the water from the zinc and 

interacts with the zinc using its carbonyl oxygens and the hydroxamate hydroxyl.6,21,22  

SAHA Based Inhibitor Design 
 

In designing molecules for this project SAHA was used as a template molecule 

(Figure 3). It is a well known HDAC inhibitor and is currently being used in clinical 

studies.3 The HDAC protein is the most flexible in the cap group region. Altering the cap 

group is, in turn, the easiest part of the inhibitor to modify but does not lead to significant 

isozyme selectivity because of the flexibility of the outside of the protein.23 Inside the 

pocket is a much more rigid environment. Studies have shown that the linker is not 

directly involved in the binding mechanism but by changing the linker or shape, 

inhibition can be affected.23 If the linker is too long the cap group and/or zinc binding 

group will not fit into their recognition site properly or at all.6,24  

To improve the selectivity, the zinc binding group was the primary focus. SAHA 

has a hydroxamate as its zinc binding group. Hydroxamates are easily hydrolyzed 

under biological conditions, thus making them inaccessible to the zinc group in the 

HDAC binding pocket, making it a poor drug candidate. While keeping the straight chain 

alkane as the linker and a phenyl cap group, the zinc binding hydroxamate was 

replaced by a 1,2,3-triazole with various substituents. Triazoles have been 

20
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proposed to be a non classical bioisostere of amides.25 A triazole binding group would 

not be hydrolyzed under biological conditions. Also, the nitrogens in the triazole would 

be better able to bind the zinc atom and to interact with the charge relay system.  

Although the linker remains a straight alkyl chain, the length can be altered to 

better fit the channel in between the cap group and the zinc binding group. An azide-

alkyne click reaction catalyzed by a novel catalyst (5,6-diphenyl-3-(pyridine-2-yl)-1,2,4-

triazine) with copper (I) was used to synthesize the 1,2,3-triazoles. Solution phase 

synthesis was employed. The molecules were tested for inhibition activity purified or in 

solution under click conditions against the following HDACs. 

Designing Class Selective Inhibitors 
 

Part of the aim of this project was to focus on the inhibition of each class of 

histone deacetylases. HDAC1 (class I), HDAC2 (class II) and SIRT1 (Class III) were 

chosen to experimentally represent the inhibition abilities of various molecules. HDAC6 

being a class IIb HDAC is found in the cytoplasm. 

 

Figure 5: SAHA as an Inhibitor Model: Replacing the zinc binding groups with 
1,2,3-triazoles or using the classical hydroxamate zinc binding group   
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It is currently of interest because not only does HDAC6 deacetylate histone 

proteins in chromatin to regulate transcription but it can also deacetylate some 

nonhistone proteins, such as α-tubulin and HSP90.6,26 As mentioned earlier, these 

nonhistone proteins are involved with cell signaling, cell growth, and tumor 

suppression.6,24 These are all processes which need to be regulated during the course 

of cancer. HDAC6 is thought to have two catalytic domains that work independently 

from each other. These differing domains allow for more isozyme selectivity when it 

comes to drug design due to the fact that the only other HDAC that may have two 

domains is HDAC10. One of the binding domains is for the histone deacetylation and 

one for the nonhistone deacetylation.  Recently, HDAC6 has been shown to have a 

great effect on myeloma cells. Thus, not only is the selective inhibition of HDAC6 of 

interest because of its biological functions but also for its antitumor drug candidate 

possibilities.  HDAC6 overexpression has mainly been observed in breast cancer. 

Inhibition of HDAC6 leads to the depletion of pre-growth and survival of chaperone 

proteins in cancer cells.2,6,16  

HDAC1 is in the class I HDACs and is one of the more commonly studied 

HDACs. HDAC1 is found in the nucleus and is directly related to proliferation, gene 

regulation and apoptosis.24 Most class I HDACs are involved in proliferation and 

chromatin remodeling but HDAC1 differs in the fact that it helps to regulate apoptosis by 

deacetylating protein p53.24,27 HDAC1 over expression has been observed in prostate, 

gastric, colon and breast cancer. Inhibition of HDAC1 in cancer cells results in inhibition 

of proliferation and induction of autophagy. HDAC 6 and HDAC1 are strongly inhibited  
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by TSA and SAHA. But only HDAC1 is inhibited strongly by valproic acid, MGCD0103, 

and FK-228 when compared to the inhibition of HDAC6, which is only weakly inhibited 

by these known inhibitors.2  

SIRT1 is a class III HDAC inhibitor and differs from class I or II due to the fact 

that it is dependent on NAD+. SIRT1 not only has histone deacetylase abilities but is 

also known for its ADP-ribosyltransferase activity.2 ADP-ribosyltransferase is involved in 

DNA repair and apoptosis, as well as histone modification. Sirtuin activity is linked to 

NAD hydrolysis which forms nicotinamide.17 Sirtuin is thus its own regulator because it 

forms its own inhibitor while acting in the cell. Sirtuin activity not only can be inhibited to 

down regulate deacetylation but it can also be up regulated. This is caused by a 

molecule that blocks the receptor site for nicotinamide, thus allowing sirtuin activity to 

increase. The diversity in the molecules that can cause inhibition or activation of SIRT1 

makes SIRT1 a good cancer target. The above HDACs are all readily available in a 

fluorometric assay kit, Fluor de Lys, from biomol. 16,17 

Fluor de Lys Assay Background 
 

The Fluor de Lys assay is a one pot assay kit that is convenient and sensitive 

enough to detect even slight HDAC inhibition. The assay is carried out in two easy steps. 

During the first step the Fluor de Lys substrate, which has an acetylated lysine side 

chain, is incubated with HDAC1 or HDAC 6 and the inhibitor being studied at 37 oC for 

30 minutes. For SIRT1 NAD + is included in this first incubation step. When the 

substrate is deacetylated it can then react with the developer (incubated at room 

temperature for 45 minutes) in the second step to create a fluorophore. The samples 
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were excited at 360 nm and the emitted light was detected at 440 nm. This assay can 

be performed in a 96 well plate or in microcentrifuge tubes and be transferred to an 

appropriate cell for the fluorometer. 

Design and Synthesis of 1,2,3- and 1,2,4-Triazoles as Zinc 
Binding Groups 
 

A series of SAHA-like compounds (3a-c, 4 a, 6a-b – Figure 7 and Figure 8) were 

synthesized to determine if 1,2,3- or 1,2,4-triazoles could be used efficiently as zinc 

binding groups. These compounds have the typical inhibitor layout: a cap group, alkyl 

linker group, and a zinc binding group. Using a triazole as a zinc binding group should 

offer a more robust moiety that can withstand biological conditions and allow for optimal 

zinc binding. 

Design and Synthesis of 1,2,3-triazoles:  
 

The 1,2,3-triazoles have been used in a previous paper as a replacement of the 

amide bond in SAHA that links the phenyl cap group to the alkyl linker (Figure 6).19,25  

 

Figure 6: Known HDAC1 Inhibitors: from Chen et al.  19
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These papers show that the replacement of the amide bond did increase activity 

but the activity was dependent on the linker length and what substituents were used as 

the cap group.19 The triazole replacement was thought to make the cap group 

interaction stronger with the various amino acids in the cap group region.19 In 

compounds 3a-c and 4a (Figure 7) the amide bond was replaced with the 1,2,3-triazole 

to give the most advantageous cap group recognition region. In our research design, 

the 1,2,3-triazole was also used to replace the hydroxamate zinc binding group, as seen 

in SAHA. In addition to replacing the amide bond and the hydroxamate binding group, 

the linkers were varied to determine the optimal length needed to be active in the HDAC 

or SIRT pocket. The 1,2,3-triazoles offer two adjacent nitrogens, along with ‘side-arms’ 

with alcohols that can assist in zinc binding.  

The key reaction in synthesizing the 1,2,3-triazoles (Figure 7) was the use of 

Cu(I) catalyzed “click chemistry” in the presence of 5,6-diphenyl-3-(pyridine-2-yl)-1,2,4-

triazine (7a). This triazine ligand is a novel and readily used catalyst in the presence of 

base and Cu(I) in organic solvent. The use of this catalyst increases the ‘sexiness’ of 

“click chemistry” by resulting in a pure product. The column chromatography needed in 

these reactions is primarily to remove the catalyst.  

Design and Synthesis of 1,2,4-triazoles: 
 

The 1,2,4-triazoles (6a, 6b – Figure 8) offer two possibilities for zinc binding. The 

nitrogen atoms that are available are transversely placed which could allow for one 

nitrogen to directly interact with the zinc molecule and the other nitrogen to interact with 

the amino acids (such as histidine, aspartic acid, and tyrosine).6 The other 
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option would allow both nitrogen atoms to be used for zinc binding. The 1,2,4-triazoles 

do not contain the ‘side-arms’ seen in the 1,2,3-triazoles. These ‘side-arms’ could cause 

extra bulk in the binding pocket and not allow the nitrogen to appropriately interact with 

the zinc molecule. With the differences between the 1,2,3- vs the 1,2,4-triazoles and by 

using a combination of different linkers, cap groups and zinc binding groups it was 

hypothesized that an isoform selective inhibitor would be designed. 

The key reaction in forming the 1,2,4-triazoles (Figure 8) is a basic substitution 

reaction in N,N-dimethylformamide (DMF) and potassium carbonate (K2CO3) at room 

temperature. The substitution reaction is novel in the fact that, at room temperature 

there is a regioselective preference for the reaction to occur at the 1 position and not the 

4 position in the triazole. Through trial and error, it was observed that when the reaction 

was heated (60-100 oC) there was a mixture of products with substitution at the one and 

four positions.  

To test the ability of the triazoles to be adequate zinc binding groups an in vitro 

Fluor de Lys assay from BioMol was employed. This kit offers a convenient one pot 

assay that can be used with a variety of HDAC and SIRT enzymes. HDAC1, HDAC6, 

and SIRT1 were chosen to represent one of each type of the classes of HDACs, class I, 

II and II respectively.  

Results and Discussion 
 

Enyzme Inhibition 
 

SAHA like compounds with the typical hydroxamate zinc binding group being  
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replaced with a 1,2,3- or 1,2,4-triazole were synthesized and tested in the Fluor de Lys 

assay. On initial evaluation, compounds 3a-c, 4a, and 6a-b were the most active 

against inhibiting HDAC6 and can both activate and inhibit SIRT1.  

HDAC1 
 

There is no clear trend with the compounds in HDAC1 (Figure 9 and Figure 11). 

There was some ‘negative’ inhibition numbers included in the HDAC1 data. These 

numbers indicate that the enzyme was activated, an increase in activity was observed, 

by the compound instead of inhibited. It was slightly surprising the activity did not show 

more inhibiting properties. The compounds compared to the ones shown in Figure 6 are 

very similar. The only differences being the compounds have a hydroxamate instead of 

a triazole zinc binding group. This shows that for HDAC1 triazoles as the zinc binding 

group does not increase inhibition. 

 

Figure 7: 1, 2, 3, - Triazole for Zinc Binding Group Synthesis 
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Figure 8: 1, 2, 4 - Triazole for Zinc Binding Group Synthesis 
 

SIRT1 
 

The compounds appear to have a slight trend with SIRT1 depending on the type 

of triazole (Figure 9 and Figure 13). In comparison of 3a-c and 4a, the smaller alkyl 

linker shows inhibition where as the longer linker lead to activation of SIRT1 enzyme. 

Compound 3a has the smallest linker is the only compound with a 1,2,3-triazole that 

actually inhibits SIRT1. Between compounds 3b, 3c and 4a as the linker gets longer the 

more activating abilities the compound has. Compound 4a not only has the longest 

linker (6 carbons) but it also has two carbons between the triazole and the hydroxyl 

group. This gives the ‘side-arm’ the more flexibility with the additional carbons and 

probably a better ability to interact with the zinc molecule. The compounds without the 

‘side-arms’, the 1,2,4-triazoles both have inhibiting properties. As the linker gets longer 

with this set of compounds the more inhibition with SIRT1 is observed. The 1,2,4-

triazoles appear to have an opposing trend with SIRT1 than with the 1,2,3-triazoles. 

Compound 6b has the strongest inhibition properties compared to both types of  
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triazoles. None of the compounds are very strong activators or inhibitors compared to 

the controls resveratrol and suramin sodium (Figure 10 and Figure 13). Resveratrol 

causes a two hundred percent increase in activity of SIRT1. Suramin Sodium causes 

one hundred percent inhibition of SIRT1.  

HDAC6 
 

The most inhibition out of all three studies is with HDAC6 (Figure 9 and Figure 

12). Again the 1,2,4-triazoles appear to have an opposing trend from the 1,2,3-triazoles. 

The 1,2,4-triazoles, compounds 6a-b, show that as the linker gets longer the percent 

inhibition decreases. With the longer linker there is about 50 percent less inhibition than 

with the shorter linker. The 1,2,3-triazoles, compounds 3a-c shows a positive correlation 

between linker length and percent inhibition. Between the four and five carbon linker 

there is not much of a difference in inhibition. The six carbon linker causes a three fold 

increase in inhibition. The 1,2,3-triazole compound 4a has a six carbon linker and a two 

carbon spacer between the triazole and the hydroxyl group. With the above trend in 

compounds 3a-c it would be expected that 4a would be even more active due to the 

increase in length but the inhibition decreases slightly. This compound may be too long 

for the binding pocket. A selective known inhibitor for HDAC6 is tubacin (Figure 3). 

Tubacin is very similar to SAHA in zinc-binding moiety but has a much larger cap group 

region. This may help to explain why the largest percent inhibition is observed with the 

1,2,3-triazoles. A 1,2,3-triaozle is present right before the phenyl group. Both of these 

combined form a larger cap recognition region. The 1,2,3-triazoles are also similar to 

the tubacin because they do not contain the amide bond that SAHA and 
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compounds 6a-b have. The increase in cap group size and the lack of the amide bond 

is exploiting the capping group modifications more than the zinc binding group to cause 

a HDAC class selective inhibition. 

Selectivity 
 

Determining if a compound is a strong inhibitor or activator is only half of the goal 

when designing a drug target. More importantly, the molecule needs to be not only 

active against the desired target but also selective. If the compound stops all HDAC 

activity that can be just as detrimental to the disease as allowing the HDAC to be overly 

active. These compounds show selectivity towards being able to inhibit HDAC6 over 

HDAC1. There is no pattern present with HDAC1, whereas with HDAC6 there is a 

strong inhibition pattern. The compounds could inhibit up to twenty times more against 

HDAC6 than they could HDAC1. The compounds could also inhibit up to 5 times more 

against HDAC6 than they could with SIRT1. The compounds also show selectivity 

because they are able to activate SIRT1.  

It is also interesting to note the selectivity between the different types of triazoles 

in SIRT1 and HDAC6. With SIRT1, the 1,2,4-triazoles primarily inhibited SIRT1 where 

as 1,2,3-triazoles activated SIRT1. The inhibition with HDAC6 can be controlled by 

using the linker length but the inhibition pattern is opposing with the 1,2,3-triazoles 

compared to the 1,2,4-triazoles. This selectivity for HDAC6 inhibition and SIRT1 

activation makes these good molecules to consider optimizing to try to get the maximum 

amount of inhibition or activation for each class of HDACs. 
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Figure 9: HDAC1, HDAC6, and SIRT1 Assay Results: Results for 3a-c, 4a, 6a-b at a 
final concentration of 25 uM. The results are represented with the standard 
deviation of 3 independent trials. 
 

 
 

Figure 10: HDAC1, HDAC6, and SIRT1 Assay Results: Results for Control 
Compounds at a final concentration of 25 uM. The results are represented with 
the standard deviation of 3 independent trials.  
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Figure 11: HDAC1 Inhibition Graph with Various Compounds at 25 uM  
 

 
 
Figure 12: HDAC6 Inhibition Graph with Various Compounds at 25 uM 
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Figure 13: SIRT1 Inhibition Graph with Various Compounds at 25 uM 

Conclusion 
 

Though none of the synthesized compounds are strong activators or inhibitors of 

any of the classes of HDACs there are definitely some observed trends. The 1,2,3-

triazoles and 1,2,4-triazoles do not have a specific pattern with HDAC1. There was not 

much activity with the 1,2,3-triazoles or the 1,2,4-triazoles against SIRT1 but there was 

a definite pattern within the molecules. As the linker increased in the 1,2,3-triazoles the 

activation of SIRT1 also increased. The 1,2,4-triazoles showed an opposing pattern, as 

the linker length increased the inhibition of SIRT1 increased. The best inhibition was 

observed with HDAC6. The compounds appear to be selective at inhibiting HDAC6 as 

compared to HDAC1. The compounds activated SIRT1 more than inhibited, thus 

making the compounds more selective in favor of inhibiting HDAC6. 
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Future Work  
  
 To further the study of HDAC1, HDAC6, and SIRT1 using triazoles as zinc 

binding groups several changes can be studied with this class of molecules. The 

substituents on both 1,2,3- and 1,2,4-triazoles need to be altered to determine if the zinc 

binding can be increased or decreased (Figure 14). The studies with the 1,2,3-triazoles 

that have the ‘side-arms’ appear to allow some inhibition control. The length of the 

linkers in both the 1,2,3- and 1,2,4-triazoles can be changed to determine the optimal 

length for each class of HDAC. The subsituents on the cap groups can also be changed 

to increase the cap recognition region. Especially, for HDAC6 increasing the size of the 

cap recognition region may further help it the compounds to become more selective. 

The rigidity of the linker chain can be changed to determine if making the molecules 

more like TSA rather than SAHA could increase the activity and maintain the selectivity. 

Also, control compounds that mimic SAHA and previously synthesized compounds 

found in literature that contain the desired linker length also need to be tested (Figure 

14).  

 

Figure 14: Future Compounds 
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Experimental 

 
 Materials: 1H NMR and 13C NMR spectra were recorded using a Varian Inova 

instrument operating at 600 MHz. Chemical shifts were reported in parts per million 

(ppm) relative to deuterated solvent signal. High-resolution ESI mass spectra were 

recorded using a JEOL AccuTOF MS (orthogonal TOF) instrument with DART source 

calibrated with a PEG positive standard. Absorption spectra were collected on a Thermo 

Scientific Evolution 600. Fluorescence Spectrometry was performed using a Perking 

Elmer LS 55 instrument and/or a BioTek Synergy multimode plate reader. Flash column 

chromatography was performed using standard grade silica 230 x 400 mesh from 

sorbent technologies. Analytical thin-layer chromatography (TLC) was performed using 

aluminum backed silica gel TLC plates with UV indicator from Sorbent Technologies. 

The HDAC fluorimetric drug discovery kits for HDAC 1 and Sirtuin were purchased from 

Biomol International. Recombinant HDAC 6 was also purchased from Biomol 

International. Anhydrous solvents were purified using a Grubbs solvent system. 

Reagent grade chemicals were used unless otherwise indicated.  

WARNING: Low molecular weight azides are potentially explosive. Appropriate 

safety emasures should always be taken when handling these compounds.  

 

  

1a: 1,4-Diazidobutane: 1,4-Dibromobutane (2.00 g, 9.26 mmol)  was 

dissolved in dimethylformamide (20.6 mL). Sodium Azide (23.2 mmol) was dissolved in 
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 water (2.57 mL) and added to the dibromide solution. The reaction stirred at room 

temperature overnight (12-18 hours). Reaction progress was monitored by GC-MS. 

Upon consumption of starting material, water was added to the reaction mixture. The 

water was extracted with diethyl ether 3 times. The organic layers were combined and 

rinsed with water 3 times, saturated copper (II) sulfate 1 time, and brine 1 time. The 

organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated in 

vacuo. This material was used without further purification.  

 

  

1b: 1,5-Diazidopentane: 1,5-Diazidopentane was prepared from 1,5-

dibromopentane as listed above for 1,4-Diazidobutane.  

 

 

1c: 1,6-Diazidohexane: 1,6-Diazidohexane was prepared from 1,6-

dibromohexane as listed above for 1,4-Diazidobutane.  

 

  

2a: 1-(4-azidobuty)-4-phenyl-1H-1,2,3-triazole: The 1,4-diazidobutane 

(1.00 g, 7.14 mmol), phenylacetylene (0.290 g, 2.86 mmol), and triethylamine (398 uL, 

2.86 mmol) were dissolved in acetonitrile (35.8 mL). 5,6-diphenyl-3-(pyridine-2-yl)-1,2,4- 
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triazine (8.68 mg, 0.028 mmol) and tetrakis(acetonitrile-N)copper(I) tetrafluoroborate 

(8.88 mg, 0.0280 mmol) were added to the reaction solution. The reaction was stirred at 

room temperature overnight (12-18 hours). After concentration in vacuo the crude 

product was purified via silica gel chromatography with a gradient elution using ethyl 

acetate and hexanes.  

 

 

2b: 1,5-(5-azidopentyl)-4-phenyl-1H-1,2,3-triazole: 1,5-(5-

azidopentyl)-4-phenyl-1H-1,2,3-triazole was prepared as listed above for 1-(4-

azidobuty)-4-phenyl-1H-1,2,3-triazole. 

 

  

2c: 1,6-(6-azidohexyl)-4-phenyl-1H-1,2,3-triazole: 1,6-(6-azidohexyl)-

4-phenyl-1H-1,2,3-triazole was prepared as listed above for 1-(4-azidobuty)-4-phenyl-

1H-1,2,3-triazole.  
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3a: (1-(4-(4-phenyl-1H-1,2,3-triazole-1-yl)butyl)-1H-1,2,3-triazol-4-

yl)methanol: 1-(4-azidobuty)-4-phenyl-1H-1,2,3-triazole (0.400 g, 0.830 mmol), 

propargyl alcohol (50.6 uL, 0.870 mmol), and triethylamine (115 uL,0.830 mmol) 
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were dissolved in acetonitrile (5.53 mL). 5,6-diphenyl-3-(pyridine-2-yl)-1,2,4-triazine 

(26.1 mg, 0.083 mmol) and tetrakis(acetonitrile-N)copper(I) tetrafluoroborate (25.7 mg, 

0.0830 mmol) were added to the reaction solution. The reaction was stirred at room 

temperature overnight (12-18 hours). After concentration in vacuo the crude product 

was purified via column chromatography with a gradient elution using ethyl acetate and 

hexanes. 

 1H NMR (d6-DMSO, 600 MHz) δ 7.72 (s, 1H), 7.12 (s, 1H), 7.00 (d, 2H, J= 12), 

6.60 (t, 2H, J= 6), 6.49 (t, 1 H, J= 6), 4.31 (t, 1H, J= 6), 3.65 (d, 2H, J= 6), 3.59 (t, 3H, J= 

6), 3.54 (t, 3H, J= 6), 3.25 (m, 2H), 2.32 (d, 3H, J= 6), 1.66 (m, 2H), 0.98 (m, 4H). 

 13C NMR (DMSO, 151 MHz) δ147.9, 146.3, 130.7, 128.8, 127.8, 125.1, 122.6, 

121.3, 55.0, 48.8, 48.6, 48.5, 26.8, 26.7.  

HRMS (ESI) m/z calculated 299.16203 (C15H19N6O1, [M+H]+), m/z observed 

299.16058( C15H19N6O1, [M+H]+. Mass Difference (ppm) -4.87. 

 

 

3b:  (1-(5-(4-phenyl-1H-1,2,3-triazole-1-yl)pentyl)-1H-1,2,3-triazol-

4-yl)methanol: (1-(5-(4-phenyl-1H-1,2,3-triazole-1-yl)pentyl)-1H-1,2,3-triazol-4-

yl)methanol was prepared as listed above for (1-(4-(4-phenyl-1H-1,2,3-triazole-1-

yl)butyl)-1H-1,2,3-triazol-4-yl)methanol. 

 1H NMR (d6-DMSO, 600 MHz) δ 7.55 (s, 1H), 7.47 (d, 2H, J= 12), 7.25 (s, 1H),  
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6), 3.02 (s, 1H), 1.61 (m, 4H), 0.99 (m, 2H).  

13C NMR (DMSO, 151 MHz) δ148.7, 147.5, 130.6, 128.8, 125.6, 121.9, 120.0, 

56.2, 49.8, 49.7, 29.5, 29.4, 23.2.  

HRMS (ESI) m/z calculated 313.17768 (C16H21N6O1, [M+H]+), m/z observed 

313.17728 ( C16H21N6O1, [M+H]+. Mass Difference (ppm) -1.28. 

 

 

 3c: (1-(4-(6-phenyl-1H-1,2,3-triazole-1-yl)hexyl)-1H-1,2,3-triazol-4-

yl)methanol: (1-(4-(6-phenyl-1H-1,2,3-triazole-1-yl)hexyl)-1H-1,2,3-triazol-4-

yl)methanol was also prepared as listed above for (1-(4-(4-phenyl-1H-1,2,3-triazole-1-

yl)butyl)-1H-1,2,3-triazol-4-yl)methanol. 

 1H NMR (d6-DMSO, 600 MHz) δ 7.61 (s, 1H), 7.54 (d, 2H, J= 2), 7.30 (s, 1H), 

7.14 (t, 2H, J= 6), 7.05 (t, 1H, J= 6), 4.46 (d, 2H, J= 6) , 4.11 (t, 2H, J= 6), 4.05 (t, 2H, J= 

6), 3.12 (s, 1H), 1.67 (m, 2H), 1.62 (m, 2H), 1.10 (m, 4H).  

13C NMR (DMSO, 151 MHz) δ147.6, 130.7, 128.9, 128.1, 125.6, 121.8, 119.9, 

56.3, 50.1, 49.9, 30.0, 25.8, 25.8.  

HRMS (ESI) m/z calculated 327.1933 (C17H23N6O1, [M+H]+), m/z observed 

327.19202 (C17H23N6O1, [M+H]+. Mass Difference (ppm) -4.03. 
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  4a: 2-(1-(6-(4-phenyl-1H-1,2,3-triazol-1-yl)hexyl)-1H-1,2,3-triazol-

4-yl)ethanol: 2-(1-(6-(4-phenyl-1H-1,2,3-triazole-1-yl)hexyl)-1H-1,2,3-triazol-4-

yl)ethanol (0.400 g, 1.18 mmol), propargyl alcohol (89.3 uL, 1.18 mmol), and 

trieithylamine (164 uL, 1.18 mmol) were dissolved in acetonitrile (7.86 mL). 5,6-

diphenyl-3-(pyridine-2-yl)-1,2,4-triazine (5.58 mg, 0.0180 mmol) and 

tetrakis(acetonitrile-N)copper(I) tetrafluoroborate (5.65 mg, 0.0180 mmol) were added to 

the reaction solution. The reaction was stirred at room temperature overnight (12-18 

hours). After concentration in vacuo the crude product was purified via column 

chromatography  with a gradient elution using ethyl acetate and methanol.  

1H NMR (d6-DMSO, 600 MHz) δ7.62 (s, 1H), 7.56 (d, 2H, J= 12), 7.19 (d, 1H, J= 

12), 7.16 (t, 2H, J= 6), 7.05 (t, 1H, J= 12), 4.14 (t, 2H, J= 12), 4.06 (t, 2H, J= 6), 3.69 (s, 

2H), 3.13 (s, 1H), 2.67 (t, 2H, J= 12), 1.69 (t, 2H, J= 6), 1.63 (t, 2H, J= 6), 1.12 (m, 4H). 

13C NMR (DMSO, 151 MHz) δ 147.6, 130.7, 128.9, 128.1, 125.6, 119.9, 61.3, 

50.1, 49.9, 30.0, 30.0, 29.1, 25.8.  

HRMS (ESI) m/z calculated 341.20898 (C18H25N6O1, [M+H]+), m/z observed 

341.20949 (C18H25N6O1, [M+H]+. Mass Difference (ppm) 1.48. 
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 5a: 5-bromo-N-phenylpentanamide: 5-bromopentanoic acid (1.00 g, 

5.52 mmol) was dissolved in DCM (15.5 mL) with a catalytic amount of DMF (56.0 uL). 

The reaction mixture was cooled to -5 oC. A solution of 2 M oxalyl chloride (532 uL, 6.09 

mmol) in DCM (3.04 mL) was added drop wise to the reaction with vigorous stirring over 

15 minutes. The suspension was warmed to room temperature and stirred for 1 hour. 

The volatiles were evaporated under a stream of nitrogen. The residue was dissolved in 

DCM (25.6 mL) and cooled to zero oC. DIEA (2.021 mL, 11.6 mmol) was added drop 

wise. The aniline (504 uL, 5.52 mmol) was added drop wise over 1 hour. The reaction 

mixture was warmed to room temperature after the addition of the aniline and the 

reaction stirred for 2 hours.  

The reaction was quenched by addition of water (5.00 mL). The solution was 

extracted with DCM 2 times. The DCM layer was washed with saturated sodium 

bicarbonate 2 times, water 1 time, 1M hydrochloric acid 2 times, and sodium chloride 1 

time. The organic layer was dried over sodium sulfate, filtered and concentrated down in 

vacuo.28 

 

  

5b: 6-bromo-N-phenylhexanamide: 6-bromohexanoic acid was prepared 

as listed above for 5-bromo-N-phenylpentanamide.28  
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6a: N-phenyl-5-(1H-1,2,4-triazol-1-yl)pentanamide: 5-bromo-N-

phenylpentamide (60.0 mg, 0.234 mmol), 1,2,4-1H-triazole (18.0 mg, 0.258 mmol), and 

freshly ground potassium carbonate (36.0 mg, 0.258 mmol) were dissolved in DMF 

(669.0 uL). The reaction stirred at room temperature overnight (12-14 hours). The 

reaction was quenched with water (5.0 mL). The water was extracted with ethyl acetate 

3 times. The organic layers were combined and washed with brine 1 time. The organic 

layer was dried over sodium sulfate, filtered and concentrated in vacuo. 

 1H NMR (CDCl3, 600 MHz) δ 8.29 (s, 1H), 8.09 (s, 1H), 7.93 (s, 1H), 7.48 (d, 1H, 

J= 6), 7.27 (t, 2H, J= 6), 7.07 (t, 2H, J= 6), 4.16 (t, 2H, J= 6), 2.36 (t, 2H, J= 6), 1.94 (m, 

2H), 1.69 (m, 2H).  

13C NMR (CDCl3, 151 MHz) δ 171.1, 151.7, 143.1, 137.9, 129.0, 124.5, 120.1, 

49.3, 36.4, 29.2, 22.3.   

HRMS (ESI) m/z calculated 245.14024 ( C13H17N4O1, [M+H]+), m/z observed 

245.13918 (C13H17N4O1, [M+H]+. Mass Difference (ppm) -4.31. 

 

  

6b: N-phenyl-6-(1H-1,2,4-triazol-1-yl)hexanamide: 6-bromo-N-

phenylhexanamide was prepared as listed above for N-phenyl-5-(1H-1,2,4-triazol-1-

yl)pentanamide.  
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1H NMR (CDCl3, 600 MHz) δ 8.16 (s, 1H), 8.05 (s, 1H), 7.40 (s, 1H), 7.50 (d, 1H, 

J= 6), 7.29 (t, 2H, J= 12), 7.08 (t, 2H, J= 6), 4.17 (t, 2H, J= 6), 2.35 (t, 2H, J= 12), 1.94 

(m, 2H), 1.76 (m, 2H), 1.36 (m, 2H).  

13C NMR (CDCl3, 151 MHz) δ166.2, 147.3, 138.4, 133.3, 124.4, 119.7, 115.2, 

44.8, 32.6, 24.9, 21.4, 20.1.   

HRMS (ESI) m/z calculated 259.15589 ( C14H19N4O1, [M+H]+), m/z observed 

259.15473 (C14H19N4O1, [M+H]+. Mass Difference (ppm) -4.48. 

 

 

 

7a: 5,6-diphenyl-3-(pyridin-2-yl)-1,2,4-triazine.  (Z)-

picolinohydrazonamide (500.0 mg, 3.67 mmol) and benzil (772 mg, 3.67 mmol) were 

added to 10 mL of ethanol.  The slurry was heated at 80 °C for 6 h with complete 

dissolution.  Progress of the reaction was monitored by TLC.  The reaction mixture was 

cooled to room temperature and the resulting precipitate was filtered and washed with 

ethanol and ether resulting in a 76% yield.   

1H NMR (CDCl3, 600 MHz) δ 8.91 (d, 1H, J = 4.2 Hz), 8.70 (d, 1H, J = 7.8 Hz), 

7.91 (t, 1H, J = 7.8 Hz), 7.68 (d, 2H, J = 7.8 Hz), 7.64 (d, 2H, J = 7.8 Hz), 7.46 (t, 1H, J 

= 6.6 Hz), 7.43-7.31 (m, 6H).   

13C NMR (CDCl3, 151 MHz) δ 160.7, 156.4, 156.3, 152.8, 150.4, 137.0, 135.6, 

135.2, 130.6, 129.9, 129.7, 129.5, 128.5, 128.5, 125.3, 124.1.   

HRMS (ESI) m/z calculated 311.12967 (C20H15N4, [M+H]+), m/z 
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observed 311.12831 (C20H15N4, [M+H]+) 

Fluorimetric HDAC Assay: The procedure was followed for HDAC 1, 6 and 

Sirtuin as listed by Biomol with the following specifications. HDAC 1 and 6: To the 

appropriate wells, 4 uL of the test inhibitor was added to obtain a 25 uM final 

concentration. HDAC assay buffer II was warmed for 10 minutes. The chilled enzyme 

was diluted with the warm buffer and added to the wells to have a final concentration of 

0.2 ug/well. The substrate was diluted in the warm assay buffer and added to 

appropriate wells to give a final concentration of 20 uM. The reaction was incubated at 

37 oC for 30 minutes. After the 37oC incubation, 20 uL of the 5x developer solution with 

1% TSA was added to all of the wells and incubated in the dark for 45 minutes at room 

temperature. The samples were diluted appropriately (any where from 1 to 10 fold with 

nano-pure water) to be read with an excitation of 360 nm and an emission of 460 nm on 

the fluorometer. If the samples were read on the plate reader, a dichroic mirror was 

used with 80% sensitivity. The plates were white and were read with an excitation of 

360/40 and had an emission of 440/30. The data were processed using Microsoft Excel.  

SIRT 1: The protocol for the sirtuins is very similar to the HDAC 6 and 1. To the 

appropriate wells, 4 uL of compound was added to have a 25 uM final concentration. 

Followed by 6 uL of 20 % NAD+ in substrate was added to have a final concentration of 

125 uM and 500 uM respectively. HDAC assay buffer II and the above assay mix was 

warmed for 10 minutes. The enzyme was added to the warm buffer and added to the 

wells to have a final concentration of 0.04 U/well. The reaction incubated at 37 oC for 30 

minutes. After the 37 oC incubation, 20 uL of the 5x developer solution with 1% TSA  
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was added to all of the wells and incubated in the dark for 45 minutes at room 

temperature. The samples were diluted appropriately and read as listed for HDAC 1 and 

6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

 



www.manaraa.com

References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46

 



www.manaraa.com

1. Fraga, M. F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; 
Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K.; Iyer, N. G.; Perez-Rosado, 
A.; Calvo, E.; Lopez, J. A.; Cano, A.; Calasanz, M. J.; Colomer, D.; Piris, M. A.; Ahn, N.; 
Imhof, A.; Caldas, C.; Jenuwein, T.; Esteller, M.,Loss of acetylation at Lys16 and 
trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.Nat Genet 
FIELD Full Journal Title:Nature Genetics 2005, 37, (4), 391-400. 

2. Bolden, J. E.; Peart, M. J.; Johnstone, R. W.,Anticancer activities of histone 
deacetylase inhibitors.Nat Rev Drug Discovery FIELD Full Journal Title:Nature Reviews 
Drug Discovery 2006, 5, (9), 769-784. 

3. Tan, J.; Cang, S.; Ma, Y.; Petrillo, R. L.; Liu, D.,Novel histone deacetylase 
inhibitors in clinical trials as anti-cancer agents.J Hematol Oncol FIELD Full Journal 
Title:Journal of Hematology & Oncology 3, No pp given. 

4. Schaefer, S.; Jung, M.,Chromatin modifications as targets for new anticancer 
drugs.Arch Pharm (Weinheim, Ger) FIELD Full Journal Title:Archiv der Pharmazie 
(Weinheim, Germany) 2005, 338, (8), 347-357. 

5. Costi, R. e. a.,Cinnamoyl Compound as Simple Molecules that Inhibit p300 
Histone Acetyltransferase.j Med Chem 2007, 50, 1973-1977. 

6. Marson, C. M.,Histone deacetylase inhibitors: design, structure-activity 
relationships and therapeutic implications for cancer.Anti-Cancer Agents Med Chem 
FIELD Full Journal Title:Anti-Cancer Agents in Medicinal Chemistry 2009, 9, (6), 661-
692. 

7. Grozinger, C. S., S. ,Deacetylase Enzymes: Biological Functions and the Use of 
Small Molecule Inhibitors.  
.j Med Chem 2006, 49, (16), 4809-4812. 

8. Yang, X.-J., and Seto, E,HATs and HDACs: from structure, function and 
regulation to novel strategies for therapy and prevention.oncogene 2007, 26, 5310-5318. 

9. Kalin, J. H.; Butler, K. V.; Kozikowski, A. P.,Creating zinc monkey wrenches in 
the treatment of epigenetic disorders.Curr Opin Chem Biol FIELD Full Journal 
Title:Current Opinion in Chemical Biology 2009, 13, (3), 263-271. 

10. Marks, P. A.; Rifkind, R. A.; Richon, V. M.; Breslow, R.; Miller, T.; Kelly, W. 
K.,Histone deacetylases and cancer: causes and therapies.Nat Rev Cancer FIELD Full 
Journal Title:Nature Reviews Cancer 2001, 1, (3), 194-202. 

11. Biel, M., Wascholowski, V, Giannis,Epigenetics- an epicenter of gene regulation: 
Histones and histone modifying enzymes.Angew chem int ed 2005, 44, 3186-3216. 

47

12. Kouzarides, T.,Acetylation: a regulatory modification to rival 
phosphorylation?EMBO J 2000, 19, 1176- 1179. 

 



www.manaraa.com

13. Roy, S.; Packman, K.; Jeffrey, R.; Tenniswood, M.,Histone deacetylase inhibitors 
differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in 
prostate cancer cells.Cell Death Differ FIELD Full Journal Title:Cell Death and 
Differentiation 2005, 12, (5), 482-491. 

14. Johnstone, R. W.; Licht, J. D.,Histone deacetylase inhibitors in cancer therapy: Is 
transcription the primary target?Cancer Cell FIELD Full Journal Title:Cancer Cell 2003, 
4, (1), 13-18. 

15. Siavosh Mahboobi, A. S., Heymo Hocher, Christian Garhammer, Herwig 
Pongratz, Thomas Maier, Thomas Ciossek, and thomas Beckers,2-Aroylindoles and 2-
Aroylbenzofurans with N-Hydroxyacrylamide Substructures as a Novel Series of 
Rationally Designed Histone Deacetylase Inhibitors.J Med Chem 2007, 50, 44505 - 
44018. 

16. Witt, O.; Deubzer, H. E.; Milde, T.; Oehme, I.,HDAC family: What are the cancer 
relevant targets?Cancer Lett (Shannon, Irel) FIELD Full Journal Title:Cancer Letters 
(Shannon, Ireland) 2009, 277, (1), 8-21. 

17. Khan, N., Jeffers, Michael, Kumar, Samphath et al. ,Determination of the class 
and isoform selectivity of small-molecule hitone deacetylase inhibitors.biochem J 2008, 
409, 581-589. 

18. Hanessian, S.; Auzzas, L.; Larsson, A.; Zhang, J.; Giannini, G.; Gallo, G.; Ciacci, 
A.; Cabri, W.,Vorinostat-Like Molecules as Structural, Stereochemical, and 
Pharmacological Tools.ACS Med Chem Lett FIELD Full Journal Title:ACS Medicinal 
Chemistry Letters 1, (2), 70-74. 

19. Chen, P. C.; Patil, V.; Guerrant, W.; Green, P.; Oyelere, A. K.,Synthesis and 
structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazole-
linked cap group.Bioorg Med Chem FIELD Full Journal Title:Bioorganic & Medicinal 
Chemistry 2008, 16, (9), 4839-4853. 

20. Marson, C. M.; Mahadevan, T.; Dines, J.; Sengmany, S.; Morrell, J. M.; Alao, J. 
P.; Joel, S. P.; Vigushin, D. M.; Coombes, R. C.,Structure-activity relationships of 
aryloxyalkanoic acid hydroxyamides as potent inhibitors of histone deacetylase.Bioorg 
Med Chem Lett FIELD Full Journal Title:Bioorganic & Medicinal Chemistry Letters 2007, 
17, (1), 136-141. 

21. Finnin, M. S., Donigian, J R, Cohen, A Richon, V M, Rifkind, R A, Marks, P A, 
Breslow, R, Pavletich, N P Structures of a histone deacetylase homologue bound to the 
TSA and SAHA inhibitors.Nature 1999, 401, 188-193. 

22. Somoza, J. R., et al. ,Structural snapshots of human HDAC8 provide insights into 
the class I histone deacetylases.Structure 2004, 12, 1325-1334. 

4823. Bieliauskas, A. V.; Pflum, M. K. H.,Isoform-selective histone deacetylase 
inhibitors.Chem Soc Rev FIELD Full Journal Title:Chemical Society Reviews 

 



www.manaraa.com

2008, 37, (7), 1402-1413. 

24. Zhang, L.; Fang, H.; Xu, W.,Strategies in developing promising histone 
deacetylase inhibitors.Med Res Rev FIELD Full Journal Title:Medicinal research 
reviews 30, (4), 585-602. 

25. Pirali, T.; Pagliai, F.; Mercurio, C.; Boggio, R.; Canonico, P. L.; Sorba, G.; Tron, 
G. C.; Genazzani, A. A.,Triazole-Modified Histone Deacetylase Inhibitors As a Rapid 
Route to Drug Discovery.J Comb Chem FIELD Full Journal Title:Journal of 
Combinatorial Chemistry 2008, 10, (5), 624-627. 

26. Suzuki, T.; Kouketsu, A.; Itoh, Y.; Hisakawa, S.; Maeda, S.; Yoshida, M.; 
Nakagawa, H.; Miyata, N.,Highly Potent and Selective Histone Deacetylase 6 Inhibitors 
Designed Based on a Small-Molecular Substrate.J Med Chem FIELD Full Journal 
Title:Journal of Medicinal Chemistry 2006, 49, (16), 4809-4812. 

27. Witt, O.; Lindemann, R.,HDAC inhibitors: Magic bullets, dirty drugs or just 
another targeted therapy.Cancer Lett (Shannon, Irel) FIELD Full Journal Title:Cancer 
Letters (Shannon, Ireland) 2009, 280, (2), 123-124. 

28. Mukhopadhyay, U.; Tong, W. P.; Gelovani, J. G.; Alauddin, M. M.,Radiosynthesis 
of 6-([18F]fluoroacetamido)-1-hexanoicanilide ([18F]FAHA) for PET imaging of histone 
deacetylase (HDAC).J Labelled Compd Radiopharm 2006, 49, (11), 997-1006. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

49

 



www.manaraa.com

Vita 
 
Rachel Louise Glazener was born to Walter David Glazener and Joan Doris Wooldridge 

June 18th 1985.  She graduated from Greenville Senior High School, Academy of 

Academic Excellence, Greenville, SC. She went on to earn a bachelors degree in 

multidisciplinary Chemistry from Winthrop University, Rock Hill, SC. She attended the 

University of Tennessee, Knoxville, TN and completed her Masters degree in Organic 

Chemistry under Dr. Shane Foister.  

 
 
 
 
 

50

 


	Determining the Activity of Three HDAC Variants in the Presence of Compounds Containing 1,2,3-and 1,2,4-Triazoles as Zinc Binding Groups
	Recommended Citation

	Dedication
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	 
	Introduction
	Background and Mode of Action of HDACs
	Classes and Functions of HDACs
	Types of HDAC Inhibitors
	HDAC Typical Design Features
	SAHA Based Inhibitor Design
	Designing Class Selective Inhibitors
	Fluor de Lys Assay Background

	Design and Synthesis of 1,2,3- and 1,2,4-Triazoles as Zinc Binding Groups
	Design and Synthesis of 1,2,3-triazoles: 
	Design and Synthesis of 1,2,4-triazoles:

	Results and Discussion
	Enyzme Inhibition
	HDAC1
	SIRT1
	HDAC6

	Selectivity
	Conclusion
	Future Work 

	Experimental
	References
	Vita

